Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 133(3): 459-472, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38181407

RESUMEN

BACKGROUND AND AIMS: Transcriptome sequencing is a cost-effective approach that allows researchers to study a broad range of questions. However, to preserve RNA for transcriptome sequencing, tissue is often kept in special conditions, such as immediate ultracold freezing. Here, we demonstrate that RNA can be obtained from 6-month-old, field-collected samples stored in silica gel at room temperature. Using these transcriptomes, we explore the evolutionary relationships of the genus Pitcairnia (Bromeliaceae) in the Dominican Republic and infer barriers to gene flow. METHODS: We extracted RNA from silica-dried leaf tissue from 19 Pitcairnia individuals collected across the Dominican Republic. We used a series of macro- and micro-evolutionary approaches to examine the relationships and patterns of gene flow among individuals. KEY RESULTS: We produced high-quality transcriptomes from silica-dried material and demonstrated that evolutionary relationships on the island match geography more closely than species delimitation methods. A population genetic examination indicates that a combination of ecological and geographical features presents barriers to gene flow in Pitcairnia. CONCLUSIONS: Transcriptomes can be obtained from silica-preserved tissue. The genetic diversity among Pitcairnia populations does not warrant classification as separate species, but the Dominican Republic contains several barriers to gene flow, notably the Cordillera Central mountain range.


Asunto(s)
Flujo Génico , Transcriptoma , Humanos , Transcriptoma/genética , Región del Caribe , Hojas de la Planta/genética , ARN
2.
PeerJ ; 11: e16456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034874

RESUMEN

kakapo (kakapo) is a Python-based pipeline that allows users to extract and assemble one or more specified genes or gene families. It flexibly uses original RNA-seq read or GenBank SRA accession inputs without performing global assembly of entire transcriptomes or metatranscriptomes. The pipeline identifies open reading frames in the assembled gene transcripts and annotates them. It optionally filters raw reads for ribosomal, plastid, and mitochondrial reads, or reads belonging to non-target organisms (e.g., viral, bacterial, human). kakapo can be employed for targeted assembly, to extract arbitrary loci, such as those commonly used for phylogenetic inference in systematics or candidate genes and gene families in phylogenomic and metagenomic studies. We provide example applications and discuss how its use can offset the declining value of GenBank's single-gene databases and help assemble datasets for a variety of phylogenetic analyses.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Transcriptoma , Humanos , RNA-Seq , Filogenia , Transcriptoma/genética
3.
Front Plant Sci ; 14: 1125107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063179

RESUMEN

Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.

4.
New Phytol ; 231(5): 2039-2049, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34101188

RESUMEN

Approximately one-half of all flowering plants express genetically based physiological mechanisms that prevent self-fertilisation. One such mechanism, termed RNase-based self-incompatibility, employs ribonucleases as the pistil component. Although it is widespread, it has only been characterised in a handful of distantly related families, partly due to the difficulties presented by life history traits of many plants, which complicate genetic research. Many species in the cactus family are known to express self-incompatibility but the underlying mechanisms remain unknown. We demonstrate the utility of a candidate-based RNA-seq approach, combined with some unusual features of self-incompatibility-causing genes, which we use to uncover the genetic basis of the underlying mechanisms. Specifically, we assembled transcriptomes from Schlumbergera truncata (crab cactus or false Christmas cactus), and interrogated them for tissue-specific expression of candidate genes, structural characteristics, correlation with expressed phenotype(s), and phylogenetic placement. The results were consistent with operation of the RNase-based self-incompatibility mechanism in Cactaceae. The finding yields additional evidence that the ancestor of nearly all eudicots possessed RNase-based self-incompatibility, as well as a clear path to better conservation practices for one of the most charismatic plant families.


Asunto(s)
Cactaceae , Autoincompatibilidad en las Plantas con Flores , Cactaceae/genética , Flores/genética , Filogenia , Proteínas de Plantas/genética , Ribonucleasas/genética , Autoincompatibilidad en las Plantas con Flores/genética
5.
Front Plant Sci ; 12: 633979, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692818

RESUMEN

Anthocyanins are the primary pigments contributing to the variety of flower colors among angiosperms and are considered essential for survival and reproduction. Anthocyanins are members of the flavonoids, a broader class of secondary metabolites, of which there are numerous structural genes and regulators thereof. In western European populations of Lysimachia arvensis, there are blue- and orange-petaled individuals. The proportion of blue-flowered plants increases with temperature and daylength yet decreases with precipitation. Here, we performed a transcriptome analysis to characterize the coding sequences of a large group of flavonoid biosynthetic genes, examine their expression and compare our results to flavonoid biochemical analysis for blue and orange petals. Among a set of 140 structural and regulatory genes broadly representing the flavonoid biosynthetic pathway, we found 39 genes with significant differential expression including some that have previously been reported to be involved in similar flower color transitions. In particular, F3'5'H and DFR, two genes at a critical branchpoint in the ABP for determining flower color, showed differential expression. The expression results were complemented by careful examination of the SNPs that differentiate the two color types for these two critical genes. The decreased expression of F3'5'H in orange petals and differential expression of two distinct copies of DFR, which also exhibit amino acid changes in the color-determining substrate specificity region, strongly correlate with the blue to orange transition. Our biochemical analysis was consistent with the transcriptome data indicating that the shift from blue to orange petals is caused by a change from primarily malvidin to largely pelargonidin forms of anthocyanins. Overall, we have identified several flavonoid biosynthetic pathway loci likely involved in the shift in flower color in L. arvensis and even more loci that may represent the complex network of genetic and physiological consequences of this flower color polymorphism.

6.
Mol Phylogenet Evol ; 131: 55-63, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385308

RESUMEN

Despite a relatively vast accumulation of molecular data, the timing of diversification of modern bird lineages remains elusive. Accurate dating of the origination of Telluraves-a clade of birds defined by their arboreality-is of particular interest, as it contains the most species-rich avian group, the passerines. Historically, neontological studies have estimated a Cretaceous origin for the group, but more recent studies have recovered Cenozoic dates, closer to the oldest known fossils for the group. We employ total-evidence dating to estimate divergence times that are expected to be both less sensitive to prior assumptions and more accurate. Specifically, we use a large collection of morphological character data from arboreal bird fossils, along with combined molecular sequence and morphological character data from extant taxa. Our analyses recover a Late Cretaceous origin for crown Telluraves, with a few lineages crossing the K-Pg boundary. Following the K-Pg boundary, our results show the group underwent rapid diversification, likely benefiting from increased ecological opportunities in the aftermath of the extinction event. We find very little confidence for the precise topological placement of many extinct taxa, possibly due to rapid diversification, paucity of character data, and rapid morphological differentiation during the early history of the group.


Asunto(s)
Evolución Biológica , Aves/clasificación , Fósiles , Animales , Teorema de Bayes , Biodiversidad , Aves/anatomía & histología , Aves/genética , Especiación Genética , Filogenia
7.
PeerJ ; 5: e3790, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28924504

RESUMEN

A growing number of T2/S-RNases are being discovered in plant genomes. Members of this protein family have a variety of known functions, but the vast majority are still uncharacterized. We present data and analyses of phylogenetic relationships among T2/S-RNases, and pay special attention to the group that contains the female component of the most widespread system of self-incompatibility in flowering plants. The returned emphasis on the initially identified component of this mechanism yields important conjectures about its evolutionary context. First, we find that the clade involved in self-rejection (class III) is found exclusively in core eudicots, while the remaining clades contain members from other vascular plants. Second, certain features, such as intron patterns, isoelectric point, and conserved amino acid regions, help differentiate S-RNases, which are necessary for expression of self-incompatibility, from other T2/S-RNase family members. Third, we devise and present a set of approaches to clarify new S-RNase candidates from existing genome assemblies. We use genomic features to identify putative functional and relictual S-loci in genomes of plants with unknown mechanisms of self-incompatibility. The widespread occurrence of possible relicts suggests that the loss of functional self-incompatibility may leave traces long after the fact, and that this manner of molecular fossil-like data could be an important source of information about the history and distribution of both RNase-based and other mechanisms of self-incompatibility. Finally, we release a public resource intended to aid the search for S-locus RNases, and help provide increasingly detailed information about their taxonomic distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...